Music Classification based on MFCC Variants and Amplitude Variation Pattern: A Hierarchical Approach

نویسندگان

  • Arijit Ghosal
  • Rudrasis Chakraborty
  • Bibhas Chandra Dhara
  • Sanjoy Kumar Saha
چکیده

In this work, we have presented a hierarchical scheme for classifying music data. Instead of dealing with large variety of features, proposed scheme relies on MFCC and its variants which are introduced at the different stages to satisfy the need. At the top level music is classified as song (music with voice) and instrumental (music without voice) based on MFCC. Subsequently, instrumental signals and songs are classified based on instrument type and genres respectively. Hierarchical approach has been followed for such detailed categorization. Using two-stage process, instrumental signals are identified as one of the four types namely, string, woodwind, percussion or keyboard. Wavelet and MFCC based features are used for this purpose. For song classification, at first level signals are categorized as classical or non-classical(popular) ones by capturing the MFCC pattern present in the high sub-band of wavelet decomposed signal. At second level, we consider the task of further classification of popular songs into various genres like Pop, Jazz, Bhangra (an Indian genre) based on amplitude variation pattern. RANSAC has been utilized as the classifier at all stages. Experimental result indicates the effectiveness of the proposed schemes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

شناسایی خودکار سبک موسیقی

Nowadays, automatic analysis of music signals has gained a considerable importance due to the growing amount of music data found on the Web. Music genre classification is one of the interesting research areas in music information retrieval systems. In this paper several techniques were implemented and evaluated for music genre classification including feature extraction, feature selection and m...

متن کامل

A hierarchical approach for speech-instrumental-song classification

Audio classification acts as the fundamental step for lots of applications like content based audio retrieval and audio indexing. In this work, we have presented a novel scheme for classifying audio signal into three categories namely, speech, music without voice (instrumental) and music with voice (song). A hierarchical approach has been adopted to classify the signals. At the first stage, sig...

متن کامل

Automatic Identification and Classification of the Iranian Traditional Music Scales (Dastgāh) and Melody Models (Gusheh): Analytical and Comparative Review on Conducted Research

Background and Aim: Automatic identification and classification of the Iranian traditional music scales (Dastgāh) and melody models (Gusheh) has attracted the attention of the researchers for more than a decade. The current research aims to review conducted researches on this area and consider its different approached and obstacles. Method: The research approach is content analysis and data col...

متن کامل

Multimedia Classifier

Along with the aggressive growing of the amount of digital data available (text, audio samples, digital photos and digital movies joined all in the multimedia domain) the need for classification, recognition and retrieval of this kind of data became very important. In this paper will be presented a system structure to handle multimedia data based on a recognition perspective. The main processin...

متن کامل

Recognizing the Emotional State Changes in Human Utterance by a Learning Statistical Method based on Gaussian Mixture Model

Speech is one of the most opulent and instant methods to express emotional characteristics of human beings, which conveys the cognitive and semantic concepts among humans. In this study, a statistical-based method for emotional recognition of speech signals is proposed, and a learning approach is introduced, which is based on the statistical model to classify internal feelings of the utterance....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012